Preparation of Barium Tetrahydroxo Borate Crystals (Ba[B(OH)4]2)

Koichi WATANABE,* Masayuki ICHIKAWA, and Shoichi SATO+
Department of Materials Chemistry, Faculty of Engineering,
Gunma University, Kiryu, Gunma 376

†X-Ray Research Institute, Rigaku Co. Matsubara-cho, Akishima, Tokyo 196

The preparation and properties of a new compound bariumtetrahydroxoborate (Ba[B(OH)_4]_2) are described. The crystal belongs to the monoclinic system with a = 8.33 Å, b = 16.52 Å, c = 10.22 Å, β = 107°. The properties are as follows; density = 2.83 g·cm⁻³, refractive indexes; α = 1.567₆, β = 1.547₆, γ = 1.517₈.

Single crystal of β -BaB₂O₄, 1-3) which belongs to the trigonal system with the space group of C^6 _{3V}-R3c and its density is 3.83 g/cm³, is an excellent new nonlinear optical material with a good pyroelectric properties. In optoelectronic applications the crystals of high quality are severely demanded.

The present paper describes the preparation and properties of $Ba[B(OH)_4]_2$ compound, which was obtained in the course of the preparation of the high quality raw material for growing β -BaB₂O₄ single crystal.

Both solutions of barium chloride (BaCl₂) and sodium borate (NaBO₂) are prepared by dissolving 1.0 mol of analytical-grade BaCl₂ and 2.0 mol of NaBO₂·4H₂O into 1.0 L. of distilled water, respectively. The apparatus used is a 500 mL. four-necked round-bottomed flask with a stirring bar, a Hg-thermometer (1/100 °C) and two 100 mL. additional separatory funnels in which contain BaCl₂ and NaBO₂ solutions, respectively. The flask is placed on a mantle heater and the precipitation reaction is carried out at 20 °C and at 80 °C in 100 mL. diluted hydrochloric acid or sodium hydroxide solutions. The three concentrations as 1.0 x 10^{-1} , 1.0 x 10^{-3} and 1.0 x 10^{-5} (mol/1) for the acid or base solution are used for adjusting a pH of the whole solution in a precipitation reaction. Barium chloride and sodium borate solutions are added slowly drop by drop into the acid or base solution in 1 h while continuously stirred at a speed of 500 rpm with a stirrer. After the solutions were added, stirring is continued for 30 min., then the liquid is kept standing for 1 h.

Colorless crystals of monoclinic prism form having the size of about 0.1×0.1 x 0.1 mm^3 have precipitated at the bottom of the flask at 20 °C. At 80 °C, powder-like BaB_2O_4 crystals (γ type) precipitated. There have been no data concerning the chemical and physical properties of crystals precipitated at 20 °C. Table 1 shows the powder x-ray data of crystals precipitated at 20 °C, which were calculated by the Rad-B system computer program (Rigaku Denki Co). The crystal belongs to the monoclinic system consisting of the unit cell of a = 8.33 Å, b = 16.52 Å, c = 10.22 Åand β = 107°, and has the refrative indexes; $\alpha = 1.567_6$, $\beta = 1.547_6$, $\gamma =$ 1.517₈. The density was 2.83 g·cm⁻³. On the basis of DAT data, water content of the crystals was evaluated to be 4.0 mol in a chemical unit. Moreover, from the chemical analysis by the ICP method it was determined that the concentrations of barium, boron and oxygen are 46.5, 7.3, and 46.2 in wt% respectively. Consequently, it was found that the crystals precipitatied at 20 °C were a new compound, $Ba[B(OH)_4]_2$). The measurement of chemical and physical properties as

Table 1. Powder X-ray data of $Ba[B(OH)_4]_2$ crystals

24[2(01)4]2 01/30415										
d	I/I。	h	k	1						
5.764	100	1	2	0						_
5.487	10	1	2	1						
4.905	22	0	0	2						
4.186	53	1	2	2						
4.005	95	2	0	0						
3.813	28	0	4	1						
3.400	33	1	2	2						
3.318	10	1	1	3						
3.212	17	0	1	3						
3.162	44	0	4	2						
2.930	12	2	1	3						
2.878	10	2	4	1						
2.736	25	2	0	2,	2	4	2			
2.636	28	3	2	1						
2.560	54	0	4	3,	3	2	2			
2.534	24	3	2	0						
2.442	25	1	2	4						
2.308	11	1	3	4						
2.285	14	2	4	2						
2.215	10	2	5	3,	2	3	4,	1	6	2
2.134	15	1	6	3,	2	6	1			
2.108	14	0	4	4						
2.068	21	4	0	2						
2.024	21	0	8	1,	1	1	5			
1.962	16	2	4	3,	3	6	1			
1.850	18	2	8	1,	4	4	2,	6	3	5

well as crystal structure analysis are now under way, and will be reported elsewhere in detail.

References

- 1) A. Jinang, F. Cheng, Q. Lin, Z. Cheng, and Y. Zheng, J. Crystal Growth, 79, 963 (1986).
- 2) S. Kimura and K. Kitamura, J. Ceram. Soc. Jpn., <u>101</u>, 22 (1993).
- 3) D. Y. Tang, R. K. Route, and R. S. Feigelson, J. Crystal Growth, $\underline{91}$, 81 (1988).

(Received March 17, 1993)